If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-12m-4=0
a = 1; b = -12; c = -4;
Δ = b2-4ac
Δ = -122-4·1·(-4)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{10}}{2*1}=\frac{12-4\sqrt{10}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{10}}{2*1}=\frac{12+4\sqrt{10}}{2} $
| 3(5m+8)=39 | | 4=24b | | 2(m+4)=-3m-7 | | 68+2z=180 | | 6(x+3)-4=2(7+3x) | | A=x(x-13) | | 9x+6x=8+2 | | 6(x-3)=15÷2 | | 243^3-p=3p-^3 | | 15x+9=17x-5 | | 3(5-p)-2(5+p)=3(p+1 | | 9x-6x=-8+2 | | 112=x+119 | | 6d+4+64=180 | | (2^2)×(2^n)=(2^4)^3 | | 16i+5=30i−2 | | (2^2)×(2^n)=(2^4)^3* | | 8y-8+90=66 | | 8y-8=66 | | 2x-1=3x–2= | | 50x+15=45x+28 | | 2x−1=3x–2= | | 10+4x=-8 | | 2x-1=3x–2 | | (2x-7)(6x-5)=0 | | 4(x-4)-x-2=0 | | -15=-9-r | | X+3=1+x | | 8k-9-3k-7=-6 | | -11–3x=-5 | | 2x−1=3x–2 | | 12=z+32 |